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Abstract
We obtain a bijection between the set of equivalent classes of invariant
star products on a non-degenerate triangular finite dimensional Lie bialgebra
(at , [; ]at

, rt ) over the formal power series ring Kt and the set h̄H 2(at )[[h̄]],
working in the framework developed by Etingof–Kazhdan for the quantization
of Lie bialgebras. Two of the corresponding triangular Hopf algebras over
the ring Kt [[h̄]] are isomorphic if and only if the invariant star products
defining them are equivalent. Therefore, when t = h̄, we obtain a set of
triangular Hopf quantized universal enveloping algebras which can also be
seen as quantizations of the deformation algebra

(
ah̄, [; ]ah̄

, rh̄
)
. Additionally,

two of them are isomorphic if and only if the above invariant star products are
equivalent.

PACS number: 02.20.Uw
Mathematics Subject Classification: 16W30, 17B62, 17B37, 46L65, 53D55

1. Introduction

(1) Given a Lie group endowed with a left-invariant symplectic structure we consider the set
of invariant star products on it. Drinfeld quantization theory of such Lie groups proves the
existence of a bijective mapping between the set of equivalent classes of those invariant star
products and the set of formal powers in the deformation parameter, the ‘Planck constant’,
with coefficients in the Chevalley second space of cohomology of the Lie algebra of the Lie
group and whose first terms coincide with the given symplectic form. The purpose of this
work is to obtain a similar theorem when the quantization of the above Lie groups is done in
the framework of the theory of Lie bialgebras developed by Etingof–Kazhdan. This theory is
different to the Drinfeld theory. In particular, the first theory requires us to fix a Lie associator
and the second theory is based on the Campbell–Hausdorff formula. We obtain a similar
theorem to that by Drinfeld for any nondegenerate triangular Lie bialgebra over the ring of
formal power series on an indeterminate and coefficients in a field that contains the rational
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numbers. The case of Lie groups can be seen as a particular case because the corresponding
Lie bialgebra over the real numbers is nondegenerate triangular. Each invariant star product
determines a triangular Hopf algebra and we prove that two of them are isomorphic if and only
if the corresponding invariant star products are equivalent. If we identify the indeterminate of
the ring of power series with the ‘Planck constant’ what we obtain is a set of triangular Hopf
quantized universal enveloping algebras and also a necessary and sufficient condition so that
two of them are isomorphic.

More explicitly,

(2) let (a, [; ]a) be a finite dimensional Lie algebra over a field K of characteristic zero.
Let

(
at , [; ]at

)
be a Lie algebra over the ring Kt ≡ K[[t]] of formal power series in

the indeterminate t which is a deformation algebra [6] of (a, [; ]a), i.e., as a Kt -module
at is a[[t]] and

(
at , [; ]at

)
is (a, [; ]a) modulo t. Let u be another indeterminate. Let

(at,u, [; ]at,u
), at,u = at [[u]], be the Lie algebra obtained by extension of the ring of scalars

K[[t]] −→ Kt [[u]](Kt,u ≡ Kt [[u]] ≡ K[[t, u]]) from the Lie algebra
(
at , [; ]at

)
. Let h̄ be a

third indeterminate and consider the ring Kt,u[[h̄]]. Let (at [[h̄]], [; ]at [[h̄]]) be the Lie algebra
over Kt [[h̄]] defined as before in the case of the indeterminate u.

r1 ∈ a ∧ a will be a given nondegenerate solution of the Yang–Baxter equation (YBE),
i.e. [r1, r1]a = 0, on the Lie algebra (a, [; ]a). By nondegenerate we mean rang (r1) = dim a.

The symbol rt = ∑
l�1 rl · t (l−1) ∈ at ∧ at , rl ∈ a∧ a, l ∈ N, will denote a nondegenerate

solution of YBE on the Lie algebra
(
at , [; ]at

)
.

The symbol rt,u = ∑
l�1 rt,l ·u(l−1) ∈ at [[u]] ∧ at [[u]], rt,l ∈ at ∧ at , l ∈ N, and rt,1 = rt

will denote a nondegenerate solution of YBE on the Lie algebra
(
at,u, [; ]at,u

)
over the ring

Kt [[u]].
As rt ∈ at ∧ at is a solution of YBE on

(
at , [; ]at

)
it defines the corresponding Poisson

cohomology spaces Hk
P,rt

(at ). As rt is nondegenerate, let µrt
: �(at ) −→ �(a∗

t ) be the
corresponding isomorphism. Let µrt

(rt ) = βt ∈ a∗
t ∧ a∗

t be the corresponding 2-cocycle in
the Chevalley cohomology of

(
at , [; ]at

)
with the trivial action of at on Kt and Hl(at ) be

the corresponding cohomological modules. Let µrt
: Hl

P,rt
(at ) −→ Hl(at ) be the induced

mapping on cohomology spaces. Similar meanings have the symbols µrt,u
, µr1 .

(3) r ∈ (a ⊕ a∗) ⊗ (a ⊕ a∗) will denote the canonical element. Then r = (ei, 0) ⊗ (0, ei)

in any pair of dual basis. The symbol dc will denote the co-boundary of the Chevalley
cohomology of any Lie algebra with values in the adjoint representation. The symbol(
at,u ⊕ a∗

rt,u
, [; ]at,u⊕a∗

rt,u
, εat,u⊕a∗

rt,u
= dc(t, u)r

)
will denote the quasitriangular double Lie

bialgebra of the nondegenerate triangular Lie bialgebra
(
at,u, [; ]at,u

, εat,u
= dc(t)rt,u

)
. The

element r is a solution of the YBE on
(
at,u, [; ]at,u

)
, and defines the symmetric element

� = r + σ(r) where σ is the cycle (12). � is adat,u⊕a∗
rt,u

-invariant and it satisfies the usual
infinitesimal tress relations.

(4) We fix a Lie associator � = expP(h̄t12, h̄t23) over K, [7, 8].

(5)
(
U(at,u ⊕ a∗

rt,u
),�

rt,u

0

)
will denote the universal enveloping algebra of the Lie algebra(

at,u ⊕ a∗
rt,u

, [; ]at,u⊕a∗
rt,u

)
. We do not specify its product, unit or antipode.

A theorem in [7] allows us to prove the existence of a quasitriangular quasi-Hopf algebra(
U

(
at,u ⊕ a∗

rt,u

)
[[h̄]],�rt,u

0 ,�rt,u
, R

rt,u

0 = e
h̄
2 �

)
over the ring Kt,u[[h̄]]. See theorem 2.1 .

Etingof–Kazhdan theory of quantization of Lie bialgebras [8] allows us to obtain an
element Jrt,u

∈ (
U

(
at,u ⊕ a∗

rt,u

) ⊗ U
(
at,u ⊕ a∗

rt,u

))
[[h̄]], verifying Jrt,u

= 1 ⊗ 1 + 1
2 rh̄ modulo

h̄2 such that when twisting [6] the above quasitriangular quasi-Hopf algebra via the element

2
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J−1
rt,u

we obtain a quasitriangular Hopf algebra
(
U

(
at,u ⊕ a∗

rt,u

)
[[h̄]],�rt,u , Rrt,u

)
over the ring

Kt,u[[h]]. We also write this algebra as A(at,u⊕a∗
rt,u

)[[h̄]],�,J−1
rt,u

.

(6) From a theorem by Etingof–Kazhdan we can obtain an element J̃ rt,u
= (π̃t,u ⊗ π̃t,u)Jrt,u

∈
(Uat,u ⊗ Uat,u)[[h̄]] verifying the condition J̃ rt,u

= 1 ⊗ 1 + 1
2 rt,uh̄ modulo h̄2 such that when

twisting via the element J̃−1
rt,u

the trivial triangular Hopf algebra
(
Uat,u[[h̄]],�at,u

, Rat,u
=1⊗1

)
over the ring Kt,u[[h̄]] one obtains a triangular Hopf algebra

(
Uat,u[[h̄]], �̃at,u

, R̃at,u

)
over the

ring Kt,u[[h̄]]. We will denote this algebra as Aat,u[[h̄]],J̃−1
rt,u

. The element J̃rt,u
is an invariant

star product on the nondegenerate triangular Lie bialgebra
(
at,u, [; ]at,u

, εat,u
= dc(t)rt,u

)
over

the ring Kt,u, see [1, 5, 13].

(7) Now, it has a meaning to put u = h̄ in every element appearing in the definition
of the quasitriangular quasi-Hopf algebra, quasitriangular Hopf algebra or triangular Hopf
algebra over Kt,u[[h̄]] considered in (5) and (6). In this way, we obtain, respectively, (i)
a quasitriangular quasi-Hopf algebra

(
U

(
at,h̄ ⊕ a∗

rt,h̄

)
[[h̄]],�rt,h̄

0 ,�rt,h̄
, R

rt,h̄

0 = e
h̄
2 �

)
over the

ring Kt [[h̄]]; (ii) a quasitriangular Hopf algebra
(
U

(
at,h̄ ⊕ a∗

rt,h̄

)
[[h̄]],�rt,h̄ , Rrt,h̄

)
over the ring

Kt [[h̄]]; it can be obtained by a twist via the element Jrt,h̄
∈ (

U
(
at,h̄⊕a∗

rt,h̄

)⊗U
(
at,h̄⊕a∗

rt,h̄

))
[[h̄]]

from that obtained in (i); and (iii) a triangular Hopf algebra
(
at,h̄, �̃at,h̄

, R̃at,h̄

)
over the ring

at [[h̄]]. We say that this algebra is a quantization of the pair (at , rt ). It can be obtained by
a twist via the element J̃−1

rt,h̄
∈ (Uat,h̄ ⊗ Uat,h̄)[[h̄]] from the trivial triangular Hopf algebra(

Uat,h̄[[h̄]],�at,h̄
, Rat,h̄

= 1 ⊗ 1
)

over the ring Kt [[h̄]].

(8) The adjoint representation of a Lie group G with Lie algebra (a, [; ]a) and K = R induces a
representation on the Chevalley complex H ∗(a) that is trivial. This classical theorem inspired
us for considering the Lie algebra isomorphisms in section 5 that allow us to obtain, in
sections 6 and 7, the equivalence of invariant star products. This equivalence allows us to
obtain the corresponding isomorphisms for Hopf algebras.

(9) In [17], we considered the problem of classification of invariant star products (ISPs) on
a nondegenerate triangular finite dimensional Lie bialgebra (a, [, ]a, εa = dcr1), r1 ∈ a ∧ a

over the field of real, R, or complex, C, numbers. In the notations and perspective of the
present paper it corresponds to considering the classification problem of ISPs on the trivial
nondegenerate triangular finite dimensional deformation Lie bialgebra (a⊗K[[t]], [, ]at

, εat
=

dcr1), r1 ∈ a ∧ a ⊂ at ∧ at . Trivial means that the Lie algebra structure of (at , [, ]at
) over

the ring K[[t]] is just the Lie algebra obtained by extension of scalars K −→ K[[t]] from the
Lie algebra structure of (a, [, ]a) over K. In the present paper we consider the classification
problem for ISPs on any nondegenerate triangular finite dimensional deformation Lie bialgebra
(at , [, ]at

, εat
= dcrt ), rt = r1 +

∑
l>2 rlh̄

(l−1) ∈ at ∧ at of (a, [, ]a). As K[[t]]-modules, at

is, in both cases, a[[t]], but, in the general case, (at , [, ]at
) is any Lie algebra deformation of

(a, [, ]a). When we are dealing with the general case we need to adapt the quantization theory
given in [8], part I, because it is based on a field K and not on a ring K[[t]]. This is the reason
why in [17] we had to consider the power series ru = r1 +

∑
l>2 rlu

(l−1) appearing there as
convergent series in the usual sense on the vector space a ∧ a over R or C and not in the adic
sense of the present paper for any K containing Q. In the general case, it is also necessary
to know the K[[t]] Hochschild cohomology modules H ∗(Uat ) for the coalgebra structure of
the universal enveloping algebra Uat over K[[t]], which is not just the extension by scalars
K −→ K[[t]]. A theorem by Cartier in [2] determines the Hochschild cohomology A-module
H ∗(	M) for the divided powers bialgebra (in H Cartan sense), 	M , of any free A-module,
where A is any ring. The result is H ∗(	M) 	 �(M), the exterior product A-module of M.
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In case the ring A is a Q-algebra, as it is the ring K[[t]], and M is free, the bialgebra 	M

is isomorphic to the bialgebra T S(M) of symmetric tensors over M. In our case we take the
K[[t]]-module at . Again, as K[[t]] is a Q-algebra the symmetric bialgebra Sat is isomorphic
to the K[[t]] bialgebra T Sat of symmetric tensors over at . We use this last isomorphism in
theorem 2.3. Then, we obtain the K[[t]]-module isomorphism H ∗(T Sat ) 	 �(at ). Again,
the coalgebra T Sat over K[[t]] is isomorphic to the coalgebra Uat over K[[t]]. We then have
the isomorphism of K[[t]]-modules that we need: H ∗(Uat ) 	 �(at ). We may also obtain
this theorem by the pattern in Drinfeld [6] and developed in [11] after Lazard ‘Analyseurs’
theory in [3] to compute H ∗(Ua). In the proof of proposition 4.1, the theorem about the
cohomological interpretation of the quantum Yang–Baxter equation in the non-trivial case
(at , [, ]at

, εat
= dcrt ) is needed. This theorem was given in [13] for the trivial case. It remains

true in the nontrivial case and we may then apply it in this paper. Proposition 7.1 has to be
seen as in propositions 3.7 and 3.9 in [6] but considering at the basis the Lie algebra (at , [, ]at

)

over K[[t]].
The proofs of these results will appear in a forthcoming paper. References [18] and [16]

are related to the subject of this paper.

2. Quantization of the quasitriangular Lie bialgebra
(at,u ⊕ a∗

rt,u ,[; ]at,u⊕a∗
rt,u

,εat,u⊕a∗
rt,u

= dc(t,u)r) over the ring Kt,u

(1) Pentagon, hexagon properties of associators [7, 8] and the ad-invariance of � allow us [7]
to obtain the following:

Theorem 2.1. Let
(
at,u, [; ]at,u

, εat,u
= dc(t)rt,u

)
and

(
at,u ⊕ a∗

rt,u
, [; ]at,u⊕a∗

rt,u
, εat,u⊕a∗

rt,u
=

dc(t, u)r
)

be as in (2) of section 1. Consider the Kt,u[[h̄]]-module U
(
at,u ⊕ a∗

rt,u

)
[[h̄]]. The set(

U
(
at,u ⊕ a∗

rt,u

)
[[h̄]],�rt,u

0 ,�rt,u
, R

rt,u

0 = e
h̄
2 �

)
is then a quasitriangular quasi-Hopf algebra over Kt,u[[h̄]].

We do not specify the corresponding antipode. Its existence follows from theorem 1.6 in
[6] and specific forms for it may be obtained from propositions 1.1 and 1.3 in [6]. We also do
not specify product, unity or co-unity.

Definition 2.2. We say that the quasitriangular quasi-Hopf algebra over Kt,u[[h̄]] of
theorem 2.1 is a quantization of the pair

(
at,u ⊕ a∗

rt,u
, �

)
or that this pair is the classical

limit of the quasitriangular quasi-Hopf algebra.

(2) Part (2) of the following theorem can be proved analogously to the corresponding one
in [8] part I. We only need to remark that Kt,u is a Q-algebra and that the symmetric algebras
of the Kt,u-modules at,u, a

∗
rt,u

,
(
at,u ⊕ a∗

rt,u

)
are isomorphic to the corresponding algebras of

symmetric tensors [2]. Then we apply, for example, corollary 3 of theorem 1 of section 2.8,
chapter III, of [4].

Theorem 2.3. Let
(
at,u, [; ]at,u

, εat,u
= dc(t)rt,u

)
and

(
at,u ⊕ a∗

rt,u
, [; ]at,u⊕a∗

rt,u
, εat,u⊕a∗

rt,u
=

dc(t, u)r
)

be as in the above theorem. Let M(t, u)± be the at,u ⊕ a∗
rt,u

-modules with
one generator 1± and defined as follows: M(t, u)+ = Ua∗

rt,u
· 1+;Uat,u · 1+ = 0 and

M(t, u)− = Uat,u · 1−;Ua∗
rt,u

· 1− = 0. Then

(1) The equalities i±(1±) = 1± ⊗ 1± define unique at,u ⊕ a∗
rt,u

-module morphisms i± :
M(t, u)± −→ M(t, u)± ⊗Kt,u

M(t, u)±.

4
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(2) The equality φrt,u
(1) = 1+ ⊗ 1− defines a unique at,u ⊕ a∗

rt,u
-module morphism φrt,u

:
U

(
ar ⊕ a∗

rt,u

) −→ M(t, u)+ ⊗ M(t, u)−. Moreover φrt,u
is an isomorphism.

(3) There exists an element Jrt,u
∈ (

U
(
at,u ⊕ a∗

rt,u

)
[[h̄]]

)⊗̂2
such that, when twisting via

J−1
rt,u

the quasitriangular quasi-Hopf algebra considered in theorem 2.1, one obtains a

quasitriangular Hopf algebra,
(
U

(
at,u ⊕ a∗

rt,u

)
[[h̄]],�rt,u , Rrt,u

)
, over the ring Kt,u[[h̄]].

The element Jrt,u
is given by

Jrt,u
= (

φ−1
rt,u

⊗ φ−1
rt,u

)(
�−1

1,2,34 ◦ �2,3,4 ◦ σ23 ◦ e
h̄
2 �23 ◦ �−1

2,3,4 ◦ �1,2,34 ◦ (i+ ⊗ i−)(φt,u(1))
)
,

and

�rt,u (b) = J−1
rt,u

·rt,u
�

rt,u

0 (b) ·rt,u
Jrt,u

;Rrt,u = σ
(
J−1

rt,u

) ·rt,u
e

h̄
2 � ·rt,u

Jrt,u
.

We also have Jrt,u
= 1 ⊗ 1 + 1

2 rh̄ mod h̄2 and Rrt,u = 1 ⊗ 1 + rh̄ mod h̄2. The
isomorphism �rt,u

verifies the following equality:

�rt,u
·rt,u

(
�

rt,u

0 ⊗ id
)(

Jrt,u

) ·rt,u

(
Jrt,u

⊗ 1
) = (

1 ⊗ �
rt,u

0

)(
Jrt,u

) ·rt,u

(
1 ⊗ Jrt,u

)
.

The products in these expressions are those of the enveloping algebra
U

((
at,u ⊕ a∗

rt,u

) ⊗Kt,u
Kt,u[[h̄]]

) ≡ U
(
at,u ⊕ a∗

rt,u

) ⊗Kt,u
Kt,u[[h̄]] defined by extension

of scalars Kt,u −→ Kt,u[[h̄]]. This quasitriangular Hopf algebra over Kt,u[[h̄]] will be
denoted by A(at,u⊕a∗

rt,u
)[[h̄]],�,J−1

rt,u
.

Definition 2.4. We say that the quasitriangular Hopf algebra over Kt,u[[h̄]] considered in (3)
of theorem 2.3 is a quantization of the pair

(
at,u ⊕ a∗

rt,u
, r

)
or that the pair

(
at,u ⊕ a∗

rt,u
, r

)
is

the classical limit of the quasitriangular Hopf algebra over Kt,u[[h̄]].

Fix an ordered basis {ea} in at,u, and its dual basis {ea} in a∗
rt,u

. Then we may construct

ordered bases in at,u ⊕ a∗
rt,u

,Uat,u,Ua∗
rt,u

and U
(
at,u ⊕ a∗

rt,u

)⊗2
.

Lemma 2.5. The element Jrt,u
∈ U

(
at,u ⊕ a∗

rt,u

)⊗2

[[h̄]] considered in theorem 2.3, (3) has the
form

Jrt,u
= 1 ⊗ 1 +

1

2
r h̄ +

∑
k�2

(
r

i1j1
t,u . . . r

il(k)jl(k)

t,u Qi1,...,il(k),j1,...,jl(k),k

)
h̄k,

where Qi1,...,il(k),j1,...,jl(k),k ∈ U
(
at,u⊕a∗

rt,u

)⊗2
are linear combinations of elements in the ordered

basis fixed above. The coefficients of these linear combinations are K-linear combinations of
elements determined by the structure constants of the Lie algebra (at,u, [; ]at,u

). The element
rt,u is present in every element of the ordered basis through the product in U

(
at,u ⊕ a∗

rt,u

)
, but

it does not occur in the coefficients defining Qi1,...,il(k),j1,...,jl(k),k.

3. Quantization of the nondegenerate triangular Lie bialgebra(
at,u,[; ]at,u ,εat,u = dc(t)rt,u

)
As in [9, 8], we define the mapping χrt,u

: a∗
rt,u

−→ at,u by χrt,u
(ξ) = (ξ ⊗ 1)rt,u.

Proposition 3.1. The mapping π̃t,u : at,u ⊕ a∗
rt,u

−→ at,u, defined by π̃t,u(x; ξ) = x + χrt,u
(ξ),

is a Lie-bialgebra morphism. That is, a Lie-algebra morphism verifying dc(t)rt,u ◦ π̃t,u =
(π̃t,u ⊗ π̃t,u) ◦ dc(t, u)r . Moreover (π̃t,u ⊗ π̃t,u)r = rt,u. The symbol π̃t,u will also denote the
unique algebra morphism π̃t,u : U

(
at,u ⊕ a∗

rt,u

) −→ Uat defined by the Lie algebra morphism
π̃t,u.

5
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Theorem 3.2. Consider the quasitriangular double Lie bialgebra
(
at,u ⊕ a∗

rt,u
, [; ]at,u⊕a∗

rt,u
,

εat,u⊕a∗
rt,u

= dc(t, u)r
)

over Kt,u. Let
(
Uat,u,�at,u

)
be the usual Hopf universal enveloping

algebra. Let (
U

(
at,u ⊕ a∗

rt,u

)
[[h̄]],�rt,u

0 ,�rt,u
, R

rt,u

0 = e
h̄
2 �

)
be the quasitriangular quasi-Hopf algebra, considered in theorem 2.1, whose classical
limit is the pair

(
at,u ⊕ a∗

rt,u
, �

)
. Then we have (π̃t,u ⊗ π̃t,u) ◦ �

rt,u

0 = �at,u
◦ π̃t,u.

Defining �̃rt,u
= (π̃t,u ⊗ π̃t,u ⊗ π̃t,u)�rt,u

and Rat,u
= (π̃t,u ⊗ π̃t,u)R

rt,u

0 , we get �̃rt,u
=

1 ⊗ 1 and Rat,u
= 1 ⊗ 1. In this way, we obtain the (trivial) triangular Hopf algebra

(Uat,u[[h̄]],�at,u
, �̃rt,u

= 1 ⊗ 1 ⊗ 1, Rat,u
= 1 ⊗ 1) over the ring Kt,u[[h̄]]. We call this

algebra a quantization of the pair (at,u, 0), see [6].

From proposition 3.1, theorem 3.2 and (3) of theorem 2.3 we obtain

Corollary 3.3. Write J̃ rt,u
= (π̃t,u ⊗ π̃t,u)Jrt,u

∈ (Uat,u ⊗ U(at,u)[[h̄]]. Then

(1) J̃ rt,u
= 1 ⊗ 1 + 1

2 rt,uh̄ + · · ·
(2)

(
�at,u

⊗ 1
)
J̃ rt,u

· (
J̃ rt,u

⊗ 1
) = (

1 ⊗ �at,u

)
J̃ rt,u

· (
1 ⊗ J̃ rt,u

)
.

(3) R̃at,u
= (π̃t,u ⊗ π̃t,u)R

rt,u = σ
(
J̃−1

rt,u

) · (1 ⊗ 1) · J̃ rt,u
= 1 ⊗ 1 + rt,uh̄ + · · · .

The products in these expressions coincide with the products of the enveloping algebra
Uat,u[[h̄]] ≡ Uat [[u, h̄]]. The set

(
Uat,u[[h̄]], �̃at,u

, R̃at,u

)
, denoted by Aat,u[[h̄]],J̃−1

rt,u
, is a

triangular Hopf algebra over Kt,u[[h̄]]. This algebra can be obtained by a twist via the
element J̃−1

rt,u
from the trivial triangular Hopf algebra

(
Uat,u�at,u

, Rat,u
= 1 ⊗ 1

)
considered

in theorem 3.2. It is a quantization of the pair (at,u; rt,u).

From lemma 2.5 we obtain

Lemma 3.4. The element J̃ rt,u
has the form

J̃ rt,u
= 1 ⊗ 1 +

1

2
rt,uh̄ +

∑
k�2

(
r

i1j1
t,u . . . r

il(k)jl(k)

t,u Mi1,...,il(k),j1,...,jl(k),k

)
h̄k,

where Mi1,...,il(k),j1,...,jl(k),k is a linear combination of elements in the ordered basis chosen in
Uat,u and whose coefficients are K-linear combinations of elements (polynomials) determined
by the structure constants of the Lie algebra

(
at,u, [; ]at,u

)
. The element rt,u does not appear

in Mi1,...,il(k),j1,...,jl(k),k ∈ (
Uat,u

)⊗2
.

We now define invariant star products.

Definition 3.5 [1, 5, 14]. An invariant star product on a nondegenerate triangular Lie
bialgebra

(
at,u, [; ]at,u

, εat,u
= dc(t)rt,u

)
over the ring Kt,u is any element F(t, u) =∑∞

0 Fk(t, u) · h̄k ∈ (
Uat,u ⊗ Uat,u

)
[[h̄]] verifying the following equalities:

(1) F (t, u) = 1 ⊗ 1 mod h̄;
(2) F (t, u) − σ(F (t, u)) = rt,u h̄ mod h̄2;
(3) (�at,u

⊗ 1)F (t, u) · (F (t, u) ⊗ 1) = (1 ⊗ �at,u
)F (t, u) · (1 ⊗ F(t, u)).

The products in (3) coincide with the products of the enveloping algebra Uat,u[[h̄]] ≡
Uat [[u, h̄]], that is, they coincide with the K[[u, h̄]] linear extension of the product of the
enveloping algebra Uat .
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Then we have

Proposition 3.6. The element J̃ rt,u
∈ (Uat,u)

⊗2[[h̄]], considered in corollary 3.3, is an
invariant star product on the nondegenerate triangular Lie bialgebra

(
at,u, [; ]at,u

, εat,u
=

dc(t)rt,u

)
over the ring Kt,u.

Definition 3.7 [1, 5, 14]. An invariant star product on a nondegenerate triangular Lie
bialgebra

(
at , [; ]at

, εat
= dc(t)rt

)
over the ring Kt is any element F(t) = ∑∞

0 Fk(t) · h̄k ∈
(Uat ⊗ Uat )[[h̄]] verifying the following equalities:

(1) F (t) = 1 ⊗ 1 mod h̄;
(2) F (t) − σ(F (t)) = rth̄ mod h̄2;
(3) (�at

⊗ 1)F (t) · (F (t) ⊗ 1) = (
1 ⊗ �at

)
F(t) · (1 ⊗ F(t)).

The products in (3) coincide with the products of the enveloping algebra U(at ⊗Kt

K[[t, h̄]]), that is, they coincide with the K[[h̄]] linear extension of the product of the enveloping
algebra Uat .

Proposition 3.8. Let F(t, u) ∈ (
Uat,u ⊗ Uat,u

)
[[h̄]] be an invariant star product on the

nondegenerate triangular Lie bialgebra (at,u, [; ]at,u
, εat,u

= dc(t)rt,u) over the ring Kt,u.

Consider the element F(t) ∈ (Uat ⊗ Uat )[[h̄]] obtained from F(t, u) by setting u = h̄ in all
the elements defining F(t, u); in particular by setting rt,h̄ = ∑

l�1 rt,lh̄
l ∈ at [[h̄]] ∧ at [[h̄]].

Then the element F(t) ∈ (Uat ⊗ Uat )[[h̄]] is an invariant star product on the triangular
nondegenerate Lie bialgebra (at , [; ]at

, εat
= dc(t)rt ) over the ring Kt .

Obviously we have

Corollary 3.9. Let J̃ rt,h̄
∈ (Uat ⊗Uat )[[h̄]] be the element as in proposition 3.8 obtained from

the element J̃ rt,u
∈ (

Uat,u ⊗ Uat,u

)
[[h̄]] considered in corollary 3.3. Then J̃ rt,h̄

is an invariant
star product on the triangular nondegenerate Lie bialgebra (at , [; ]at

, εat
= dc(t)rt ) over the

ring Kt .

4. An invariant star product F (t) ∈ (Uat ⊗ Uat)[[h̄]] on (at,[; ]at
,εat

= dc(t)rt)
determines an element rt,h̄ ∈ (at ∧ at)[[h̄]] such that F (t) and J̃rt,h̄ ∈ (Uat ⊗ Uat)[[h̄]]
are equivalent

Let F(t) ∈ Uat [[h̄]] ⊗̂ Uat [[h̄]] be an invariant star product on the nondegenerate triangular
Lie bialgebra (at , [; ]at

, εat
= dc(t)rt ) over Kt . Let Aat [[h̄]],F−1(t) be the triangular Hopf

QUE algebra obtained by a twist via F−1(t) from the trivial triangular Hopf QUE algebra(
Uat [[h̄]],�at

, Rat
= 1 ⊗ 1

)
. Then, this algebra is a quantization of the pair (at , rt ).

The following proposition does not depend on any specific context of quantization but
only on: (i) the notion of deformation of associative algebras; (ii) the fact that the Hochschild
cohomology of the bialgebra Uat is Hk(Uat ) = �kat , k ∈ N, see [2]; (iii) the Hochschild
cohomological interpretation of quantum Yang Baxter equation [14, 15].

Proposition 4.1. [14] Let F(t) = ∑∞
i Fi(t)h̄

i and F ′(t) = ∑∞
i F ′

i (t)h̄
i be invariant star

products on (at , [; ]at
, εat

= dc(t)rt ). Let Aat [[h̄]],F−1(t) and Aat [[h̄]],F ′−1(t) be as above in this
section. Suppose that F(t) and F ′(t) coincide up to order k, i.e. Fl(t) = F ′

l (t), l = 1, 2, . . . , k.

Then (a) there exist hk+1 ∈ at ∧ at and Ek+1(t) ∈ Uat such that F ′
k+1(t) − Fk+1(t) =

hk+1 + dHEk+1(t) where dH is the coboundary operator in the Hochschild cohomology of
Uat ; (b) hk+1 is not only a Hochschild 2-cocycle but also a Poisson 2-cocycle relatively to the
invariant Poisson structure defined by the element rt ∈ at ∧ at .
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Again, the above Hochschild cohomology spaces and proposition 4.1 play a central role in
the proof of the next theorem. In the context of quantification in [8] this theorem corresponds
to a main theorem by Drinfeld in the context of quantification in [5]. In [14, 15] there is a
proof of this Drinfeld theorem. See the references in [15] for a similar theorem about star
products on general symplectic manifolds and on Poisson manifolds.

Theorem 4.2 [16, 18]. Fix a Lie associator �. Let Aat [[h̄]],F−1(t) be defined at the beginning of
this section. We have (a) there exist elements rt,h̄ = rt + rt,2h̄ + rt,3h̄

2 + . . . ∈ (∧2at )[[h̄]] and
Ert,h̄ = 1 + E

rt,h̄

1 h̄ + · · · + E
rt,h̄

n h̄n + · · · ∈ Uat [[h̄]] such that

F(t) = �at
((Ert,h̄ )−1) ·t J̃ �

rt (h̄) ·t (Ert,h̄ ⊗ Ert,h̄ );
i.e., F(t) and J̃ �

rt ,h̄
∈ (

Uat ⊗ Uat

)
[[h̄]] are equivalent invariant star products over the

nondegenerate triangular Lie bialgebra (at , [; ]at
, εat

= dc(t)rt ) over the ring Kt . (b) The
triangular Hopf QUE algebras Aat [[h̄]],F−1(t) and Aat [[h̄]],(J̃ �

rt,h̄
)−1 are isomorphic.

As a consequence we have the following isomorphisms:

Corollary 4.3. Let �,�′ be two Lie associators. Let Aat [[h̄]],F−1(t) be given as in the
theorem. Let rt,h̄, r

′
t,h̄ ∈ (∧2at )[[h̄]] be the elements determined in the theorem by the pairs(

�;Aat [[h̄]],F−1(t)

)
and

(
�′;Aat [[h̄]],F−1(t)

)
, respectively. Then we have

Aat [[h̄]],F−1(t)

isom≈ Aat [[h̄]],(J̃ �
rt,h̄

)−1

isom≈ A
at [[h̄]],(J̃ �′

r′
t,h̄

)−1 .

5. Some properties of nondegenerate triangular Lie bialgebras(
at,u,[; ]at,u ,εat,u = dc(t)rt,u

)
over Kt[[u]]

(1) We now develop what we wrote in section 1, (8) in the introduction. We need the following:

Proposition 5.1. Let
(
at,u, [; ]at,u

, εat,u
= dc(t)rt,u

)
be a nondegenerate triangular Lie

bialgebra over Kt,u. Let ϕ1
t,u : at,u −→ at,u be a Lie algebra isomorphism. Let r ′

t,u be
the element in at [[u]] ∧ at [[u]] defined as r ′

t,u = (
ϕ1

t,u ⊗ ϕ1
t,u

)
rt,u.

(a) The set
(
at,u, [, ]at,u

, ε′
at,u

= dc(t)r
′
t,u

)
is a nondegenerate triangular Lie bialgebra.

(b) The transposed map
(
ϕ1

t,u

)t
: a∗

r ′
t,u

−→ a∗
rt,u

is a Lie algebra isomorphism.

(c) The pair
(
ϕ1

t,u;ϕ2
t,u = ((

ϕ1
t,u

)t)−1)
defines a Lie bialgebra isomorphism between

the Lie bialgebra
(
at ⊕ a∗

rt,u
, [, ]at⊕a∗

rt,u
, εat⊕a∗

rt,u
= dc(t, u)r

)
and the Lie bialgebra(

at ⊕ a∗
r ′
t,u

, [, ]at⊕a∗
r′t,u

, εat⊕a∗
r′t,u

= dc(t, u)r
)
. Furthermore, this isomorphism sends the

canonical element r ∈ (a ⊕ a∗)⊗2 into itself.

Corollary 5.2.

(a) Under the hypotheses of the proposition let βt,u = µrt,u
(rt,u) and β ′

t,u = µr ′
t,u

(r ′
t,u) be

elements of a∗
t ∧ a∗

t [[u]]. Then
(
ϕ2

t,u ⊗ ϕ2
t,u

)
βt,u = β ′

t,u.

(b) Conversely, let βt,u and β ′
t,u be as considered in (a). Let ϕ1

t,u : at,u −→ at,u be a Lie

algebra isomorphism and ϕ2
t,u = ((

ϕ1
t,u

)t)−1
. Suppose that

(
ϕ2

t,u ⊗ϕ2
t,u

)
βt,u = β ′

t,u. Then,(
ϕ1

t,u ⊗ ϕ1
t,u

)
rt,u = r ′

t,u.

8
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(2) In the Lie algebra
(
at,u, [; ]at,u

)
over Kt,u consider the following Lie-algebra isomorphisms:

ϕ1
t,u = exp

(
t ·adXt,u

)
where Xt,u = X1,u +X2,ut +X3,ut

2 + · · · ∈ au[[t]]. Then ϕ2
t,u = exp

(− t ·
adt

Xt,u

) = exp
(
t ·ad∗

Xt,u

)
. Our interest is in the map ϕ2

t,u ⊗ϕ2
t,u = exp

(
ad∗

tXt,u
⊗1+1⊗ad∗

tXt,u

)
.

Proposition 5.3. Let βt,1 = βt and let βt,u = βt,1 + βt,2u + βt,3u
2 + . . . ∈ ∧2(a∗

t [[u]])), or
equivalently βt,u = β1,u + β2,ut + β3,ut

2 + . . . ∈ ∧2(a∗
u[[t]]), be a nondegenerate 2-cocycle

on the Lie algebra
(
at,u, [; ]at,u

)
. The elements βt,1, βt,2, . . . ∈ ∧2(a∗

t ) are then 2-cocycles on
the Lie algebra

(
at , [; ]at

)
, with the trivial action, and βt,1 is nondegenerate. Let Xt,u be as

considered before. Then

exp
(
ad∗

tXt,u

)⊗2

(βt,u) = exp
(
ad∗

tXt,u
⊗ 1 + 1 ⊗ ad∗

tXt,u

)
(βt,u) = βt,u + dR(t)γt,u,

where γt,u = t
∑

l�1 γl,u(t)t
l−1 ∈ ta∗

u[[t]] and

γ1,u(t) = (i(Xt,u)βt,u)

γ2,u(t) =
(

1

2!
(i(Xt,u)βt,u) ◦ adXt,u

)
γ3,u(t) = (

(i(Xt,u)βt,u) ◦ adXt,u
◦ adXt,u

)
, etc.

A converse of proposition 5.3 is

Proposition 5.4. Let βt,u be as considered in proposition 5.3. Let γt,u = α1,ut + α2,ut
2 +

α3,ut
3 + . . . ∈ a∗

u[[t]];αl,u ∈ a∗
u, l = 1, 2, . . . . Define β ′

t,u = βt,u +dR(t)γt,u. Then, there exists

a unique Xt,u = X1,u + X2,ut + X3,ut
2 + . . . ∈ au[[t]] such that exp

(
ad∗

tXt,u

)⊗2

(βt,u) = β ′
t,u. It

is given by

i(X1,u)β1,u = α1,u,

i(X2,u)β1,u + i(X1,u)β2,u +
1

2!
(i(X1)β1) ◦ (i(X1,u)B1,u) = α2,u,

i(X1,u)β3,u + i(X2,u)β2,u + i(X3,u)β1,u

+
1

2!

(
(i(X2,u)β1,u) ◦ (i(X1,u)B1,u) + (i(X1,u)β2,u) ◦ (i(X1,u)B1,u)

+ (i(X1,u)β1,u) ◦ (i(X2,u)B1,u) + (i(X1,u)β1,u) ◦ (i(X1,u)B2,u)

+ (i(X1,u)β1,u) ◦ (i(X1,u)B1,u) ◦ (i(X1,u)B1,u)
) = α3,u, etc.

where Bl,u ∈ L(au, au; au), l = 1, 2, . . . are some well-determined bilinear mappings.

As β1,u is invertible the first equation allows us to compute X1,u. Analogously the second
equation allows us to obtain X2,u etc. It is easy to obtain a general form for Xl,u as a function
of Xk,u, 1 � k < l.

(3) The following property is needed:

Proposition 5.5. Let
(
at,u, [; ]at,u

, εat,u
= dc(t)rt,u

)
and

(
at,u, [; ]at,u

, ε′
at,u

= dc(t)r
′
t,u

)
be nondegenerate triangular Lie bialgebras as considered in section 2. Let

(
at,u ⊕

art,u
, [; ]at,u⊕a∗

rt,u
, εat,u⊕a∗

rt,u
= dc(t, u)r

)
and

(
at,u ⊕ ar ′

t,u
, [; ]at,u⊕a∗

rt,u
, εat,u⊕a∗

r′t,u
= dc(t, u)r

)
be

the corresponding quasitriangular doubles. Let
(
ϕ1

t,u;ψt,u

)
: at,u ⊕ a∗

rt,u
−→ at,u ⊕ a∗

r ′
t,u

be

a Lie algebra isomorphism such that ϕ1
t,u : at,u −→ at,u and ψt,u : a∗

rt,u
−→ a∗

r ′
t,u

are Lie

algebra isomorphisms. Let ϕ̃1
t,u, ψ̃t,u be the extensions of ϕ1

t,u and ψt,u to homomorphisms

Uat,u −→ Uat,u and Ua∗
rt,u

−→ Ua∗
r ′
t,u

. Let X(t, u) ∈ U
(
at,u ⊕ a∗

rt,u

)⊗2

. Let φrt,u
and φr ′

t,u
be

the Lie algebra-module isomorphisms defined in theorem 2.3, (2). Then we have

φ−1
r ′
t,u

[((
ϕ̃1

t,u; ψ̃t,u

)⊗2

(X(t, u))
) · (

1
r ′
t,u

+ ⊗ 1
r ′
t,u

−
)] = ((

ϕ̃1
t,u; ψ̃t,u

) ◦ φ−1
rt,u

)(
X(t, u) · (

1rt,u

+ ⊗ 1rt,u

−
))

.
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We can also prove the following:

Proposition 5.6. Let
(
at,u, [; ]at,u

, εat,u
= dc(t, u)rt,u

)
and

(
at,u, [, ]at,u

, ε′
at,u

= dc(t, u)r ′
t,u

)
be nondegenerate triangular Lie bialgebras over Kt,u. Let ϕ1

t,u : at,u −→ at,u be a Lie
algebra isomorphism such that r ′

t,u = (
ϕ1

t,u ⊗ ϕ1
t,u

)
rt,u and let

(
ϕ1

t,u;ϕ2
t,u

)
be the Lie bialgebra

isomorphism between the corresponding classical doubles constructed in proposition 5.1.
Then, we have

π̃ ′
t,u ◦ (

ϕ1
t,u;ϕ2

t,u

) = ϕ1
t,u ◦ π̃t,u,

where π̃ ′
t,u and π̃t,u are defined in proposition 3.1.

6. A necessary and sufficient condition to be isomorphic two triangular Hopf algebras
Aat[[h̄]],J̃−1

rt,h̄
and Aat[[h̄]],J̃−1

r′
t,h̄

over Kt[[h̄]]

If in the expression of Jrt,u
given in theorem 2.3 we take into account proposition 5.5 and also

the form of a Lie associator � = eP(h̄�12,h̄�23) we arrive at

Proposition 6.1. Hypotheses are as in proposition 5.5. Let Jr ′
t,u

and Jrt,u
be the corresponding

elements in theorem 2.3, (3). Suppose moreover that
(
ϕ1

t,u;ψt,u

) ⊗ (
ϕ1

t,u;ψt,u

)
� = �.

Then Jr ′
t,u

= (
ϕ̃1

t,u; ψ̃t,u

)⊗2

Jrt,u
. In particular, this proposition is valid for the Lie bialgebra

isomorphism
(
ϕ1

t,u;ϕ2
t,u

)
considered in propositions 5.3 and 5.4.

(4) Using propositions 5.1, 6.1, 5.6 and corollary 5.2 we can prove

Proposition 6.2. (a) Let J̃ rt,h̄
and J̃ r ′

t,h̄
be elements ∈ (Uat )

⊗2[[h̄]] which are invariant
star products on a nondegenerate triangular Lie bialgebra (at , [; ]at

, εat
= dc(t)rt ) over

Kt as in definition 3.5, and obtained as in corollary 3.3 and corollary 3.9, respectively
from the nondegenerate solutions rt,u, r

′
t,u ∈ (at ∧ at )[[u]] of the YBE on the Lie-algebra(

at,u, [; ]at,u

)
as in section 1. Let µrt,u

(rt,u) = βt,u = βt,1 + βt,2u + βt,3u
2 . . . ∈ (a∗

t ∧ a∗
t )[[u]]

and µr ′
t,u

(r ′
t,u) = β ′

t,u = βt,1 + β ′
t,2u + β ′

t,3u
2 . . . ∈ (a∗

t ∧ a∗
t )[[u]]. (b) Suppose that the

cocycles βt,u and β ′
t,u belong to the same cohomological class in H(at,u) ≡ H 2(at )[[u]], i.e.,

β ′
t,u = βt,u +dR(t)γt,u for some 1-cochain γt,u = γt,1u+γt,2u

2 +γt,3u
3 · · · ∈ a∗

t [[u]]. Then,J̃ rt,h̄

and J̃ r ′
t,h̄

are equivalent invariant star products.

To prove the converse we need the following lemma:

Lemma 6.3. Suppose that in proposition 6.2

βt,u = βt,1 + βt,2u + βt,3u
2 + · · · + βt,R−1u

R−2 + βt,RuR−1 + · · ·
β ′

t,u = βt,1 + βt,2u + βt,3u
2 + · · · + βt,R−1u

R−2 + (βt,R + dRαt,(R−1))u
R−1 + · · · ,

where αt,(R−1) is an element in a∗
t , that is, a 1-cochain on the Lie algebra

(
at , [; ]at

)
over the

ring Kt . This means that β ′
t,u and βt,u are equal except in the term of order R − 1. Then, J̃ rt ,h̄

and J̃ r ′
t ,h̄ are equivalent,

J̃ r ′
t,h̄

= �at
(E)−1 ·t J̃ rt,h̄

·t (E ⊗ E),

and the element E = 1 + Et,1h̄ + Et,2h̄
2 + · · · + Et,(R−1)h̄

R−1 + · · · ∈ Uat [[h̄]] which defines
this equivalence verifies

Et,1 = 0, Et,2, . . . , Et,(R−2) = 0, Et,(R−1) = χrt
(αt,(R−1)) = µ−1

rt
(αt,(R−1)).
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Lemma 6.3 and Hochschild cohomology properties allow us to prove

Proposition 6.4. Let J̃ rt,h̄
and J̃ r ′

t,h̄
be as considered in theorem 6.2. Suppose that J̃ rt,h̄

and J̃ r ′
t,h̄

are equivalent. Then β ′
t,u and βt,u belong to the same cohomological class, i.e.,

β ′
t,u = βt,u + dR(t)γt,u for some 1-cochain γt,u · · · ∈ a∗

t [[u]].

Combining the last two theorems we obtain the following result, similar in Etingof–
Kazhdan quantization theory to that by Drinfeld in [5]:

Proposition 6.5. Let J̃ rt,h̄
and J̃ r ′

t,h̄
be elements in (Uat )

⊗2[[h̄]] which are invariant star
products on a nondegenerate triangular Lie bialgebra (at , [, ]at

, εat
= dc(t)rt ) over Kt as

in theorem 6.2. Then J̃ rt,h̄
and J̃ r ′

t,h̄
are equivalent invariant star products if, and only if,

µrt,u
(rt,u) = βt,u and µr ′

t,u
(r ′

t,u) = β ′
t,u belong to the same cohomological class in H 2(at )[[u]].

In other words, J̃ rt,h̄
and J̃ r ′

t,h̄
are equivalent invariant star products if, and only if, there exists

a 1-cochain γt,u ∈ a∗
t,u such that β ′

t,u = βt,u + dR(t)γt,u.

Proposition 6.5 and remark (2) on page 841 of [7] allow us to obtain

Proposition 6.6. Two triangular Hopf algebras Aat [[h̄]],J̃−1
rt,h̄

and Aat [[h̄]],J̃−1
r′
t,h̄

over Kt [[h̄]]

defined as in corollary 3.9 and section 4 are isomorphic if, and only if, µrt,u
(rt,u) = βt,u and

µr ′
t,u

(r ′
t,u) = β ′

t,u belong to the same cohomological class in H 2(at )[[u]].

(5) From the above results and remark (2) on page 841 of [7] we may also prove

Proposition 6.7. Let Aat,h̄⊕a∗
rt,h̄

,�,J−1
rt,h̄

and Aat,h̄⊕a∗
r′
t,h̄

,�,J−1
r′
t,h̄

be quasitriangular Hopf QUE

algebras over Kt [[h̄]] which are quantizations, as in theorem 2.3 after putting u = h̄, of
the quasitriangular Lie bialgebra

(
at ⊕ a∗

rt
, [, ]at⊕a∗

rt
, εat⊕a∗

rt
= dc(t)r

)
over the ring Kt .

Suppose that the cocycles µrt,u
(rt,u) = βt,u and µr ′

t,u
(r ′

t,u) as in proposition 6.2 define the
same cohomological class in H 2(at )[[u]]. Then the quasitriangular Hopf QUE algebras
Aat,h̄⊕a∗

rt,h̄
,�,J−1

rt,h̄
and Aat,h̄⊕a∗

r′
t,h̄

�,J−1
r′
t,h̄

over the ring Kt [[h̄]] are isomorphic.

7. Isomorphic triangular Hopf algebras over K[[h̄]] of type Aah̄,J̃rh̄,h̄

We start from a deformation algebra (ah̄, [; ]ah̄
) of the Lie algebra (a, [; ]a) over the field K

and from an element rh̄ = ∑
l�1 rlh̄

l−1 ∈ ah̄ ∧ ah̄ which is nondegenerate (r1 is invertible)
and a solution of the YBE ([rh̄, rh̄]ah̄

= 0) on the Lie algebra (ah̄, [; ]ah̄
) over K[[h̄]].

We call the set (ah̄, [; ]ah̄
, rh̄) a nondegenerate triangular Lie bialgebra deformation of the

nondegenerate triangular Lie bialgebra (a, [, ]a, r1) over K. These elements are just the
elements

(
at , [; ]at

)
, rt = ∑

l�1 rlt
l−1 ∈ at ∧at , [rt , rt ]at

= 0 considered before setting t = h̄.
Consider two elements rt,u and r ′

t,u as in section 6. We set u = h̄ and obtain rt,h̄ and r ′
t,h̄,

as in that section, and the corresponding propositions there. We set moreover t = h̄ and get
rh̄,h̄, r

′
h̄,h̄ ∈ ah̄ ∧ ah̄. The corresponding elements J̃−1

rh̄,h̄
, J̃ −1

rh̄,h̄
∈ Uah̄ ⊗̂ Uah̄ will also be called

invariant star products on the deformation algebra (ah̄, [; ]ah̄
). From proposition 6.5 we obtain

Proposition 7.1. Let J̃ rh̄,h̄
and J̃ r ′

h̄,h̄
∈ Uah̄ ⊗̂Uah̄ be the above invariant star products

on a non-degenerate triangular Lie bialgebra deformation (ah̄, [, ]ah̄
, εah̄

= dc(h̄)rh̄) of
the non-degenerate triangular Lie bialgebra (a, [, ]a, εa = dcr1) over K. Let µrt,h̄

(rt,h̄) =
βt,h̄ and µr ′

t,h̄
(r ′

t,h̄) = β ′
t,h̄ be the elements defining them and Aah,J̃ rh̄,h̄

and Aah,J̃ r ′̄
h,h̄

the

corresponding triangular quantized universal enveloping algebras over K[[h̄]]. These algebras
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are isomorphic if, and only if, βt,h̄ and β ′
t,h̄ belong to the same cohomological class in

H 2
R(at )[[h̄]].

Also, we obtain

Corollary 7.2. Suppose that the deformation algebra (ah̄, [; ]ah̄
) is a trivial one, that is,

it is just that obtained by extension of scalars K −→ K[[h̄]]. Suppose also that rh̄ = r1

and rh̄,h̄ = r1 + r2h̄ + r3h̄
2 + · · · and write it as r0,h̄. Similarly suppose r ′

h̄ = r1 and
r ′
h̄,h̄ = r1 + r ′

2h̄ + r ′
3h̄

2 + · · · and write it as r ′
0,h̄. Let β0,h̄ = β1 + β2h̄ + β3h̄

2 + · · · and
β ′

0,h̄ = β1 + β ′
2h̄ + β ′

3h̄
2 + · · · be the corresponding elements in (a∗ ∧ a∗)[[h̄]]. We have

(i) If βk and β ′
k are, for any k = 2, 3, 4, . . . , in the same cohomological class in H 2(a),

the triangular Hopf quantized universal enveloping algebras Aah,J̃ r0,h̄
and Aah,J̃ r′0,h̄

are

isomorphic and conversely.
(ii) In the particular case when K is the field R, what we get is that the set of equivalent classes

of quantizations (usual term) of the Lie group G with Lie algebra (a, [, ]a) and endowed
with a left invariant symplectic structure β1 ∈ a∗ ∧ a∗ is in a bijective correspondence
with the set β1 + h̄H 2(a)[[h̄]]. A theorem in the Etingof–Kazhdan setting similar to that
given by Drinfeld [5].
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de Coimbra

13


	1. Introduction
	2. Quantization
	3. Quantization
	4. An
	5. Some
	6. A necessary
	7. Isomorphic
	Acknowledgments
	References

